Protein–protein
interactions are inherently anisotropic
to some degree, with orientation-dependent interactions between repulsive
and attractive or complementary regions or “patches”
on adjacent proteins. In some cases it has been suggested that such
patch–patch interactions dominate the thermodynamics of dilute
protein solutions, as captured by the osmotic second virial coefficient
(B22), but delineating when this will
or will not be the case remains an open question. A series of simplified
but exactly solvable models are first used to illustrate that a delicate
balance exists between the strength of attractive patch–patch
interactions and the patch size, and that repulsive patch–patch
interactions contribute significantly to B22 for only those conditions where the repulsions are long-ranged.
Finally, B22 is reformulated, without
approximations, in terms of the density of states for a given interaction
energy and particle–particle distance. Doing so illustrates
the inherent balance of entropic and energetic contributions to B22. It highlights that simply having strong
patch–patch interactions will only cause anisotropic interactions
to dominate B22 solution properties if
the unavoidable entropic penalties are overcome, which cannot occur
if patches are too small. The results also indicate that the temperature
dependence of B22 may be a simple experimental
means to assess whether a small number of strongly attractive configurations
dominate the dilute solution behavior.