Given the ubiquitous nature of protein-DNA interactions, it is important to understand the interaction thermodynamics of individual amino acid sidechains for DNA. One way to assess these preferences is to perform molecular dynamics (MD) simulations. Here we report MD simulations of twenty amino acid sidechain analogs interacting simultaneously with both a 70-base pair double-stranded DNA and with a 70-nucleotide single-stranded DNA. The relative preferences of the amino acid sidechains for dsDNA and ssDNA match well with values deduced from crystallographic analyses of protein-DNA complexes. The estimated apparent free energies of interaction for ssDNA, on the other hand, correlate well with previous simulation values reported for interactions with isolated nucleobases, and with experimental values reported for interactions with guanosine. Comparisons of the interactions with dsDNA and ssDNA indicate that, with the exception of the positively charged sidechains, all types of amino acid sidechain interact more favorably with ssDNA, with intercalation of aromatic and aliphatic sidechains being especially notable. Analysis of the data on a base-by-base basis indicates that positively charged sidechains, as well as sodium ions, preferentially bind to cytosine in ssDNA, and that negatively charged sidechains, and chloride ions, preferentially bind to guanine in ssDNA. These latter observations provide a novel explanation for the lower salt-dependence of DNA duplex stability in GC-rich sequences relative to AT-rich sequences.