This study investigated the thermo-hydrodynamic groundwater environment of a sandy beach where a unique sand bathing method attracts many visitors. The discussed temperatures covered a wide range, from the normal to the boiling temperature of water. We, at first, examined the feasible conditions for sand bathing and found that the volumetric water content was the crucial factor. Comprehensive field observations were implemented to elucidate two physical quantities: the groundwater flow and the temperature in the sand layer. The latter one was found to be governed by the groundwater level and tidal fluctuations. The characteristics obtained were found to be consistent with the feasible conditions in the landward area. While in the offshore area, the temperature was proved to have suddenly dropped. These results strongly suggest that the underground heat source is distributed in specific spots. A numerical model to describe the groundwater flows and the heat transfer mechanism was developed based on a saturated/unsaturated seepage flow model. The computational results were found to adequately reproduce the observed spatial temperature distribution. The reproduction ability of the model was found to be limited in terms of temporal variations; it was good for the groundwater level, but not for the temperature in the sand.