Coastal habitats are declining worldwide, which has impacted economically important fisheries, especially in the Indian River Lagoon, Florida. As a result, extensive intertidal oyster reef and living shoreline restoration projects have been implemented. Restoration can also theoretically benefit predator populations, but this relationship is understudied. Here, the impact of habitat restoration on juvenile predatory fish (i.e., sportfish) populations (abundance) and communities (species richness, diversity, and assemblage) was assessed prior to and following oyster reef restoration and living shoreline stabilization for up to three years, and incorporated the influence of 17 environmental predictor variables. Juvenile sportfish abundance and richness (n = 11) were variable over time but collectively higher on restored oyster reefs compared to controls, and similar between control and stabilized shorelines. Sportfish abundance was best described by a combination of biotic features of the site (e.g., reef height and benthic substrate cover), prey abundance, decreasing distance to the nearest ocean inlet and dissolved oxygen. Results suggest future restoration site selection should emphasize adequate dissolved oxygen (~6 mg/L), oyster densities above 50/m2 and reef height above 55 mm, and minimum shoreline vegetation coverage of 50% to support macrofaunal prey and subsequently attract sportfish. These findings can help natural resource managers better use habitat restoration as a tool for enhancing fish populations in the future.