a b s t r a c tCommercial formulations of poly(vinyl acetate) (PVAc) and acrylic dispersions and paints commonly used by artists include a number of additives such as surfactants, coalescing agents, defoamers and thickeners, which are designed for improving shelf-life, as well as chemical and physical properties of the resulting product. Recent studies have shown that additives present in paints play an important role in the alteration processes undergone by the painting during ageing and further in cleaning tasks planed in conservation interventions. However, the identification of additives is a difficult task due to the elusive character of these substances present at low concentration in the paint.In this context, a four-step approach is proposed that includes analysis of paint samples together with analysis of their water extracted products by pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) and pyrolysis-silylation-gas chromatography-mass spectrometry (Py-silylation-GC-MS). This analytical strategy enables a better characterization of common additives present in commercial PVAc and acrylic paints and dispersions. In particular, the analysis of water soluble extracts, which are mainly composed by paint additives, avoids the interference of the major polymer pyrolizates. Experimental conditions concerning sample preparation and instrumental working conditions of both Py-GC techniques are optimized.Both acrylic and PVAc paints presented poly(ethylene oxide) (POE) type fragments dominating the background of their pyrograms, especially when derivatized by means of hexamethyldisilazane (HMDS). For the first time, additives such as alkyl sulfate and alkyl ether sulfate with C 10 and C 12 alkyl chains, poly(ethoxylate) fatty alcohol and octylphenyl poly(ethoxylate) surfactants were identified, as well as polyvinyl alcohol (PVOH) protective colloids, hydrophobically modified ethoxylated urethane (HEUR) thickeners an defoamers. Their major fragments and corresponding mass spectra are discussed.