Abstract:The tribological protection of carbon fiber reinforced epoxy composites (CFC) is essential for broadening their use from structural to functional applications, e.g., to linear bearings in mechanical engineering. However, their wear resistance in sliding and rolling contacts is low. This work focusses on the possibility of improving their tribological properties by the application of thin hard multi-layered coatings. Chromium nitride (CrN) single layer and chromium-CrN multilayer coatings of ~4 µm thickness, partly finished with a 1 µm diamond-like carbon (DLC) top layer, were deposited by magnetron sputtering at low temperatures on soft CFC and for comparison of the mechanical behavior on comparatively hard austenitic steel substrates. Structural investigations showed especially that the multilayer coatings possess a very fine grained, columnar microstructure and a very low density of intercolumnar micro-cracks, while the single layer coatings possess a coarse structure. The indentation testing and the analysis of the deformed and fractured cross-sections revealed a tougher behavior with improved plastic deformability of the multilayers in comparison to CrN single layers. However, in wear testing only coatings with DLC top layers significantly improved the tribological material properties of CFC. This is due to the reduced shear forces in sliding on low-friction DLC coatings on the soft
OPEN ACCESSCoatings 2014, 4 122 epoxy-based CFC, decreasing the total dynamic stresses during sliding under high loads.