The rotational constants and the nitrogen nuclear quadrupole coupling constants of cis-3-aminophenol and trans-3-aminophenol are determined using Fourier-transform microwave spectroscopy. We examine several J = 2 ← 1 and 1 ← 0 hyperfine-resolved rotational transitions for both conformers. The transitions are fit to a rigid rotor Hamiltonian including nuclear quadrupole coupling to account for the 14 N nuclear spin. For cis-3-aminophenol we obtain rotational constants of A = 3734.930 MHz, B = 1823.2095 MHz, and C = 1226.493 MHz, for trans-3-aminophenol of A = 3730.1676 MHz, B = 1828.25774 MHz, and C = 1228.1948 MHz. The dipole moments are precisely determined using Stark effect measurements for several hyperfine transitions to µ a = 1.7718 D, µ b = 1.517 D for cis-3-aminophenol and µ a = 0.5563 D, µ b = 0.5375 D for trans-3-aminophenol. Whereas the rotational constants and quadrupole coupling constants do not allow to determinate the absolute configuration of the two conformers, this assignment is straight-forward based on the dipole moments. High-level ab initio calculations (B3LYP/6-31G* to MP2/aug-cc-pVTZ) are performed providing error estimates of rotational constants and dipole moments obtained for large molecules by these theoretical methods.