We report a temperature-dependent divergent approach to synthesize multisubstituted cyclopentadienes through cobalt-catalyzed carbon−carbon (C−C) bond activation of cyclopropenes and ring expansion with internal alkynes. By employing different heating procedures, two cyclopentadiene substitution isomers were efficiently and selectively constructed. This reaction does not require preactivation of the metal catalyst or additional reducing reagents. Preliminary mechanistic investigations suggest that the key steps are oxidative addition of the cyclopropene to cobalt catalyst, followed by alkyne insertion and 1,5-ester shift.