We have developed a reductive carbonylation method by which unactivated alkyl iodides can be hydroxymethylated to provide one-carbon-extended alcohol products under Cu-catalyzed conditions. The method is tolerant of alkyl β-hydrogen atoms, is robust towards a wide variety of functional groups, and was applied to primary, secondary, and tertiary alkyl iodide substrates. Mechanistic experiments indicate that the transformation proceeds by atom-transfer carbonylation (ATC) of the alkyl iodide followed in tandem by two CuH-mediated reductions in rapid succession. This radical mechanism renders the Cu-catalyzed system complementary to precious-metal-catalyzed reductive carbonylation reactions.