Focused electron and ion beam induced deposition (FEBID/FIBID) methods have gained significant attention in recent years because of their unique ability for the maskless fabrication of arbitrary three-dimensional shapes. Both techniques enable material deposition down to the nanoscale for applications in materials science and condensed matter physics. However, the number of suitable precursor molecules, especially for high purity deposits, is usually still very limited to date. Additionally, both the FEBID and FIBID process are very complex when assessed in detailed and the development of process-optimize, tailored precursor molecules is not yet possible. In the first part of this work hexacarbonyl vanadium (V(CO)6) and dimanganese decacarbonyl (Mn2(CO)10) are investigated for their use in FEBID in order to complement the already existing data on transition metal carbonyl precursors. In addition, chemical vapor deposition (CVD) has been carried out to compare compositional differences for electron induced and purely thermal processes. FEBID using V(CO)6 resulted in the formation of a vanadium (oxy)carbide material with a V:C ratio of approx. 0.6-0.9. The material shows a temperature-dependent normalized electrical conductance typical for granular metals in agreement with TEM analysis. Additionally, characterization of the crystalline fractions reveals a cubic VC1-xOx phase in agreement with the phase observed in CVD thin films. Thermal decomposition using CVD yielded material of higher purity with V:C ratios of 1.1-1.3. In contrast, an insulating material with approx. 40 at% Mn is obtained for FEBID using Mn2(CO)10 as precursor with very similar compositions being observed for CVD thin films. The second part of this work deals with the deposition of defined alloy materials by focused charged particle beam deposition. Three silyl substituted transition metal carbonyl complexes have been synthesized and tested for FEBID, FIBID and CVD. The three precursors investigated were: H3SiMn(CO)5, H3SiCo(CO)4, and H2Si(Co(CO)4)2. FEBID experiments with the manganese derivative show the selective loss of silicon, and metal/metalloid contents of up to 49 at%. Contrary, material derived from both cobalt derivatives did retain the 1:1 and 2:1 Co:Si ratios respectively, resulting in metal/metalloid contents of up to 62 at%. Temperature-dependent normalized electrical conductance measurements of as-grown and post-growth electron beam irradiated samples reveal behavior typical for granular metals except for the as-grown CoSi material which is located on the insulating side of the metal-insulator transition. Ga+-FIBID revealed H2Si(Co(CO)4)2 to be a very suitable precursor, retaining the predefined Co:Si ratio in the deposits, while significant loss of silicon was observed for H3SiCo(CO)4 derived deposits. Contrary to FEBID high metal/metalloid contents of up to 90 at% are obtained. Additionally, temperature dependent electrical properties of dicobalt silicide and the expected ferromagnetic behavior have been observed for the Co2Si-FIBID material. Further analysis enables the proposition of different dominating decomposition channels in FEBID and FIBID based on microstructural features such as bubble formation in FIBID materials.