Drugs that target novel surfaces on the androgen receptor (AR) and/or novel AR regulatory mechanisms are promising alternatives for the treatment of castrate-resistant prostate cancer. The 52 kDa FK506 binding protein (FKBP52) is an important positive regulator of AR in cellular and whole animal models and represents an attractive target for the treatment of prostate cancer. We used a modified receptor-mediated reporter assay in yeast to screen a diversified natural compound library for inhibitors of FKBP52-enhanced AR function. The lead compound, termed MJC13, inhibits AR function by preventing hormone-dependent dissociation of the Hsp90-FKBP52-AR complex, which results in less hormonebound receptor in the nucleus. Assays in early and late stage human prostate cancer cells demonstrated that MJC13 inhibits AR-dependent gene expression and androgen-stimulated prostate cancer cell proliferation.immunophilin | FKBP4 | steroid hormone receptor A ndrogens are a major stimulator of prostate tumor growth, and all current therapies act as classic antagonists by competing with androgens for binding the androgen receptor (AR) hormone binding pocket. This mechanism of action exploits the dependence of AR on hormone activation, but current treatment options become ineffective in castrate-resistant prostate cancer (CRPC), although CRPC remains ligand/AR-dependent. Thus, drugs that target novel surfaces on AR and/or novel AR regulatory mechanisms may provide promising alternatives for the treatment of CRPC (reviewed in ref. 1).The maturation of cytoplasmic steroid hormone receptors (SHR) to a mature hormone binding conformation is a highly ordered, dynamic process that involves multiple chaperone and cochaperone components (reviewed in ref. 2), all of which present potential opportunities for therapeutic intervention. The final mature complex in which the receptor is capable of high affinity hormone binding includes heat shock protein 90 (Hsp90), a 23 kDa cochaperone (p23), and one of a class of proteins (termed FKBPs) characterized by their Hsp90-binding tetratricopeptide repeat (TPR) domain. The 52 kDa FK506 binding protein (FKBP52) associates with receptor-Hsp90 complexes by way of a C-terminal TPR domain and is a specific positive regulator of AR, glucocorticoid receptor (GR), and progesterone receptor (PR) signaling (3-5). FKBP52 is required for normal male sexual differentiation and development in mice as the fkbp52-deficient mice (52KO) display characteristics of partial androgen insensitivity syndrome including dysgenic prostate (4, 6). FKBP proteins are validated targets of immunosuppressive drugs. FK506 (Tacrolimus) is used clinically to suppress the immune system following organ transplantation. FK506 binds within the peptidyl-prolyl isomerase (PPIase) catalytic pocket of a related family member, FKBP12. The chemical groups of FK506 that project out from the PPIase pocket allow the FKBP12-drug complex to bind tightly to and inhibit calcineurin, which ultimately leads to immunosupression (7). Although FK506 binding ...