Device-free localization (DFL) with wireless sensor networks (WSN) is an emerging technology for target localization, which has received much attention in the area of Internet of Things. Received signal strength (RSS) measurements are the key to realize DFL and mainly affects the localization performance. Most existing approaches need to measure the RSS of all the wireless links in WSN, which take much time on measurement process and localization algorithm due to the large amounts of RSS data, thus they are inefficient, especially in the case of target tracking. In this paper, by making full use of the consecutiveness of motion, we present an efficient measurement strategy based on a small set of correlated wireless links. Furthermore, a lightweight compressed maximum matching select (CMMS) algorithm is proposed to localize target, which only needs a small-scale matrix-vector product operating for one estimation. The proposed approach can significantly reduce the number of RSS measurements and improve the real-time capability of the DFL system. Experimental results demonstrate the superior performance of the proposed method in the context of target localization and tracking.