Agricultural sorbents have received attention for their effectiveness in oil removal. In Malaysia, oil palm’s empty fruit bunch (EFB) spikelets are an abundant agricultural waste that provides a non-toxic, renewable resource of cellulosic materials. In this study, the effectiveness of EFB spikelets to remove oil spills from seawater pollution in a filter system was investigated and the best optimisation approach for filtering conditions was determined. Experiments for oil spill clean-up were performed using a filter-based oil sorption system with a series of conditions such as temperature, time, packing density, and oil concentration to evaluate sorption capacity, oil and water absorbed efficiency. Fourier transform infrared spectroscopy (FTIR) was used to characterise the physicochemical properties of untreated and treated EFB fibres. Based on one-factor-at -a-time (OFAT) analysis conducted at 160 °C for 30 min on 0.1 g/cm3 of packing density containing 25% diesel, 8.667 mL of oil and 5 mL of water was absorbed. In response surface methodology (RSM), the three parameters of temperature, packing density and diesel concentration were observed as significant. From RSM fitting model analysis, the predicted value obtained for both oil and water absorbed were 8.805 and 5.213 mL, respectively. The experimental RSM values of 9 and 5 mL of oil and water absorbed were obtained. The result demonstrated the validity of the model as the experimental RSM values were close to the RSM model’s prediction. As compared to OFAT, the RSM method is more efficient in oil removal. This research contributes to a better knowledge of the usage of a natural sorbent as a method of diesel pollution remediation.