Depth information has been used in computer vision for a wide variety of tasks. Since active range sensors are currently available at low cost, high-quality depth maps can be used as relevant input for many applications. Background subtraction and video segmentation algorithms can be improved by fusing depth and color inputs, which are complementary and allow one to solve many classic color segmentation issues. In this paper, we describe one fusion method to combine color and depth based on an advanced color-based algorithm. This technique has been evaluated by means of a complete dataset recorded with Microsoft Kinect, which enables comparison with the original method. The proposed method outperforms the others in almost every test, showing more robustness to illumination changes, shadows, reflections and camouflage.