This paper proposes tools from bifurcation theory, specifically numerical continuation, as a complementary method for efficiently mapping the state-parameter space of an internal combustion engine model. Numerical continuation allows a steady-state engine response to be traced directly through the state-parameter space, under the simultaneous variation of one or more model parameters. By applying this approach to two nonlinear engine models (a physics-based model and a data-driven model), this work determines how input parameters ‘throttle position’ and ‘desired load torque’ affect the engine’s dynamics. Performing a bifurcation analysis allows the model’s parameter space to be divided into regions of different qualitative types of the dynamic behaviour, with the identified bifurcations shown to correspond to key physical properties of the system in the physics-based model: minimum throttle angles required for steady-state operation of the engine are indicated by fold bifurcations; regions containing self-sustaining oscillations are bounded by supercritical Hopf bifurcations. The bifurcation analysis of a data-driven engine model shows how numerical continuation could be used to evaluate the efficacy of data-driven models.