Taking care of water resources and minimizing water losses in water supply networks requires a broad approach to identifying and neutralizing operational problems. The correct selection of water meters to minimize apparent losses requires knowledge of the characteristic flows that may occur in the facility to which water is supplied. The research aimed to develop tools in the form of mathematical models and water consumption curves along with hourly water consumption coefficients to facilitate the process of selecting water meters for engineers and creating computer models of water supply systems. The research involved monitoring the flow of 76 single-family and multi-family buildings in four towns in Poland, followed by data analysis and development of tools supporting the selection of water meters and the construction of computer models of water distribution networks. High correlation coefficients of the studied variables indicate the results’ usefulness. Four models were developed to determine the maximum flow values in multi-family buildings (three models) and single-family buildings (one model) in the range of water meter diameters DN15-DN40. Characteristics of the average hourly peak coefficient (HPC) values were also developed, along with the range of changes in HPC values for single-family and multi-family buildings.