Lying at the crossroads of Asia and the Pacific world, the Indonesian archipelago hosts one of the world's richest accumulations of cultural, linguistic, and genetic variation. While the role of human migration into and around the archipelago is now known in some detail, other aspects of Indonesia's complex history are less understood. Here, we focus on population size changes from the first settlement of Indonesia nearly 50 kya up to the historic era. We reconstructed the past effective population sizes of Indonesian women using mitochondrial DNA sequences from 2,104 individuals in 55 village communities on four islands spanning the Indonesian archipelago (Bali, Flores, Sumba, and Timor). We found little evidence for large fluctuations in effective population size. Most communities grew slowly during the late Pleistocene, peaked 15-20 kya, and subsequently declined slowly into the Holocene. This unexpected pattern may reflect population declines caused by the flooding of lowland hunter/gatherer habitat during sea-level rises following the last glacial maximum.
Keywords
Indonesia, Mitochondrial Dna, Bayesian Skyline PlotThis open access article is available in Human Biology: http://digitalcommons.wayne.edu/humbiol/vol85/iss1/6 Abstract Lying at the crossroads of Asia and the Pacific world, the Indonesian archipelago hosts one of the world's richest accumulations of cultural, linguistic, and genetic variation. While the role of human migration into and around the archipelago is now known in some detail, other aspects of Indonesia's complex history are less understood. Here, we focus on population size changes from the first settlement of Indonesia nearly 50 kya up to the historic era. We reconstructed the past effective population sizes of Indonesian women using mitochondrial DNA sequences from 2,104 individuals in 55 village communities on four islands spanning the Indonesian archipelago (Bali, Flores, Sumba, and Timor). We found little evidence for large fluctuations in effective population size. Most communities grew slowly during the late Pleistocene, peaked 15-20 kya, and subsequently declined slowly into the Holocene. This unexpected pattern may reflect population declines caused by the flooding of lowland hunter/gatherer habitat during sea-level rises following the last glacial maximum.The prehistory of Island Southeast Asia is made especially complex by its position as a waypoint between mainland Asia, Australia, and the Pacific world. The region's prehistory is dominated by population movements, beginning with its first settlement by modern humans approximately 50 kya and continuing to the Islamization of Indonesia during the historic period. Reflecting the rich cultural and linguistic diversity of Indonesia's inhabitants, these eras have also left their mark on the genetic diversity of the individuals who inhabit Indonesia today (Cox et al.