Human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein modifications over the course of infection have been associated with coreceptor switching and antibody neutralization resistance, but the effect of the changes on replication and host cell receptor usage remains unclear. To examine this question, unique early-and chronic-stage infection envelope V1-toV5 (V1-V5) segments from eight HIV-1 subtype A-infected subjects were incorporated into an isogenic background to construct replication-competent recombinant viruses. In all subjects, viruses with chronic-infection V1-V5 segments showed greater replication capacity than those with early-infection V1-V5 domains in cell lines with high levels of both the CD4 and the CCR5 receptors. Viruses with chronic-infection V1-V5s demonstrated a significantly increased ability to replicate in cells with low CCR5 receptor levels and greater resistance to CCR5 receptor and fusion inhibitors compared to those with early-infection V1-V5 segments. These properties were associated with sequence changes in the envelope V1-V3 segments. Viruses with the envelope segments from the two infection time points showed no significant difference in their ability to infect cells with low CD4 receptor densities, in their sensitivity to soluble CD4, or in their replication capacity in monocyte-derived macrophages. Our results suggest that envelope changes, primarily in the V1-V3 domains, increase both the ability to use the CCR5 receptor and fusion kinetics. Thus, envelope modifications over time within a host potentially enhance replication capacity.The human immunodeficiency virus type 1 (HIV-1) viral envelope glycoprotein evolves over the course of infection (24,78), with the portion from constant region 2 to variable loop 5 (C2-V5) diversifying at an approximate rate of 1% per year in the absence of antiretroviral medications (77). The envelope glycoprotein variable loops 1 and 2 (V1-V2) expand and add more glycosylation sites over the course of infection (21, 76). These envelope changes arise primarily due to errors during reverse transcription, the high rate of viral replication, and recombination (25,42,58,86). The rate of mutation fixation in a virus population, however, depends on both the level of viral replication and, more importantly, the selective advantage or disadvantage conferred by the mutation. The host immune response and the replication capacity in the available target cells primarily drive this selection (12, 51). Envelope modifications that confer an advantage in evading the host humoral immune response and/or increase the efficiency of target cell infection and replication are likely favored over the course of an infection within a subject.Studies with the simian immunodeficiency virus/macaque model, simian human immunodeficiency virus, and HIV-1 have shown that envelope modifications that occur over the course of an infection confer antibody neutralization resistance (8,9,72,85). The host neutralizing antibodies target specific epitopes on the circulating vira...