The susceptibility, but not the magnitude, of long-term depression (LTD) induced by hippocampal CA3-CA1 synaptic activity (synaptic-LTD) increases with advanced age. In contrast, the magnitude of LTD induced by pharmacological activation of CA3-CA1 group I metabotropic glutamate receptors (mGluRs) increases during aging. The present study examined the signaling pathways involved in induction of LTD and the interaction between paired-pulse low frequency stimulation (PP-LFS)-induced synaptic-LTD and group I mGluR selective agonist, (RS)-3,5-dihydroxyphenylglycine (DHPG, 100 µM)-induced DHPG-LTD in hippocampal slices obtained from aged (22–24 mo) male Fischer 344 rats. Prior induction of synaptic-LTD did not affect induction of DHPG-LTD; however, prior induction of the DHPG-LTD occluded synaptic-LTD suggesting that expression of DHPG-LTD may incorporate synaptic-LTD mechanisms. Application of individual antagonist for the group I mGluR (AIDA), the N-methyl-D-aspartate receptor (NMDAR) (AP-5), or L-type voltage-dependent Ca2+ channel (VDCC) (nifedipine) failed to block synaptic-LTD and any two antagonists severely impaired synaptic-LTD induction, indicating that activation of any two mechanisms is sufficient to induce synaptic-LTD in aged animals. For DHPG-LTD, AIDA blocked DHPG-LTD and individually applied NMDAR or VDCC attenuated but did not block DHPG-LTD, indicating that the magnitude of DHPG-LTD depends on all three mechanisms.