Despite the relevant therapeutic progresses obtained with imatinib, clinical resistance to this drug has emerged and reemerged after cytogenetic remission in a group of patients with chronic myeloid leukemia (CML). Therefore, novel treatment strategies are needed. In this study, we evaluated the anti-CML activity and mechanisms of action of LQB-118, a pterocarpanquinone structurally related to lapachol [2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone]. LQB-118 treatment resulted in an important reduction of cell viability in cell lines derived from CML, both the vincristine-sensitive K562 cell line, and the resistant K562-Lucena (a cell line overexpressing P-glycoprotein). In agreement with these results, the induction of caspase-3 activation by this compound indicated that a significant rate of apoptosis was taking place. In these cell lines, apoptosis induced by LQB-118 was accompanied by a reduction of P-glycoprotein, survivin, and XIAP expression. Moreover, this effect was not restricted to cell lines as LQB-118 produced significant apoptosis rate in cells from CML patients exhibiting multifactorial drug resistance phenotype such as P-glycoprotein, MRP1 and p53 overexpression. The data suggest that LQB-118 has a potent anti-CML activity that can overcome multifactorial drug resistance mechanisms, making this compound a promising new anti-CML agent.