The sensorial properties of Colombian coffee are renowned worldwide, which is reflected in its market value. This raises the threat of fraud by adulteration using coffee grains from other countries, thus creating a demand for robust and cost-effective methods for the determination of geographical origin of coffee samples. Spectroscopic techniques such as Nuclear Magnetic Resonance (NMR), near infrared (NIR), and mid-infrared (mIR) have arisen as strong candidates for the task. Although a body of work exists that reports on their individual performances, a faithful comparison has not been established yet. We evaluated the performance of 1H-NMR, Attenuated Total Reflectance mIR (ATR-mIR), and NIR applied to fraud detection in Colombian coffee. For each technique, we built classification models for discrimination by species (C. arabica versus C. canephora (or robusta)) and by origin (Colombia versus other C. arabica) using a common set of coffee samples. All techniques successfully discriminated samples by species, as expected. Regarding origin determination, ATR-mIR and 1H-NMR showed comparable capacity to discriminate Colombian coffee samples, while NIR fell short by comparison. In conclusion, ATR-mIR, a less common technique in the field of coffee adulteration and fraud detection, emerges as a strong candidate, faster and with lower cost compared to 1H-NMR and more discriminating compared to NIR.