Passive wireless devices have increasing civilian and military applications, especially in the scenario with wearable devices and Internet of Things. In this paper, we study indoor localization of a target equipped with radio-frequency identification (RFID) device in ultra-wideband (UWB) wireless networks. With known room layout, deterministic multipath components, including the line-of-sight (LOS) signal and the reflected signals via multipath propagation, are employed to locate the target with one transmitter and a single inaccurate receiver. A factor graph corresponding to the joint posterior position distribution of target and receiver is constructed. However, due to the mixed distribution in the factor node of likelihood function, the expressions of messages are intractable by directly applying belief propagation on factor graph. To this end, we approximate the messages by Gaussian distribution via minimizing the Kullback-Leibler divergence (KLD) between them. Accordingly, a parametric message passing algorithm for indoor passive localization is derived, in which only the means and variances of Gaussian distributions have to be updated. Performance of the proposed algorithm and the impact of critical parameters are evaluated by Monte Carlo simulations, which demonstrate the superior performance in localization accuracy and the robustness to the statistics of multipath channels. he has been the vice-president and the president of Beijing Institute of Technology. His research interests include theory and techniques of wireless communication and digital signal processing. He published two books, more than 100 papers, and held several patents. Prof. Kuang is a member of subject evaluation of National Department Degree Council and the vice director of communication branch of Chinese Electronic Society. He is the recipient of Excellent Returnee from Abroad, Outstanding Scholar with Extraordinary Achievements, and Outstanding Scholar of National Defense Department.