“…ind-match {K 2 ,C 5 } (W (H n )) + ind-match {K 2 ,C 5 } (H)= ind-match {K 2 ,C 5 } (W (H n )) + 6, Therefore, ind-match {K 2 ,C 5 } (G n ) = ind-match {K 2 ,C 5 } (W (H n )) + 6 = ind-match(W (H n )) + 6 ≤ 2n + 6,where the second equality follows from the equalities ‡.SettingP (G n ) = V (W (H n ) \ x) ∪ {z, v, w} and C(G n ) = V (H) \ {u, v, w},we see that the graph G n belongs to the class PC and hence, by[14, Theorem 2.4], it is a vertex decomposable graph. Thus, for any n ≥ 13 and every s ≥ 1, we have2s + ind-match(G n ) − 1 ≤ 2s + ind-match(W (H n )) + 4 − 2s + ind-match {K 2 ,C 5 } (W (H n )) + 3 < 2s + ind-match {K 2 ,C 5 } (W (H n )) + 4 = 2s + ind-match {K 2 ,C 5 } (G n ) − 2 ≤ reg(I(G n ) s ) ≤ 2s + ind-match {K 2 ,C 5 } (G n ) − 2s + 2n + 6 − 1 < 2s + 5n 2s + cochord(G n ) − 1.…”