Electronic excitation transfer dynamics in photosynthetic systems, including the Fenna−Matthews−Olson complex, are often modeled using the interaction picture of three twolevel systems, also known as the 3-site system. Among the two possible configurations, uphill and downhill, a recent publication reported an intriguing correlation between population dynamics and the intersite coupling. Specifically, the uphill configuration has been shown to have a pronounced dependence on perturbations in the intersite coupling, whereas the downhill configuration displays negligible dependence. In this study, we consider a generic 3-site configuration and model site interactions through the Markovian master equation. Through this approach, we derive succinct analytical expressions for the population dynamics between the sites, shedding light on the differences in behavior between the two configurations. Using these analytical expressions, we demonstrate the range of tunability in population dynamics achievable with minimal changes in intersite coupling, and we validate these findings through simulation results. These insights into the population dynamics of a 3-site system are expected to play a crucial role in facilitating the design of efficient energy-transfer pathways in molecular systems.