We present systematic experimental investigations on the effects of laser polarization and interface orientation in second and third harmonic generation microscopy. We find that the laser polarization has no measurable effect on signal strength and resolution in third harmonic microscopy, while the second harmonic strongly depends upon the polarization direction of the driving laser. Moreover, we observe a strong effect of the interface orientation with respect to the laser beam direction-both in second and third harmonic generation. This affects the signal strength, as well as the obtained transversal and longitudinal resolution in microscopic imaging. As an (on the first glance) surprising feature, also surfaces parallel to the optical axis of the laser beam yield strong harmonic signal. This enables applications of harmonic microscopy in specific geometries. As an example we monitor the flow of immiscible microfluids in lateral cut by third harmonic microscopy.