Conventional coherent absorption occurs only when two incident beams exhibit mirror symmetry with respect to the absorbing surface, i.e., the two beams have the same incident angles, phases, and amplitudes. In this work, we propose a more general metasurface paradigm for coherent perfect absorption, with impinging waves from arbitrary asymmetric directions. By exploiting excitation of unidirectional evanescent waves, the output can be fixed at one reflection direction for any amplitude and phase of the control wave. We show theoretically and confirm experimentally that the relative amplitude of the reflected wave can be tuned continuously from zero to unity by changing the phase difference between the two beams, i.e. switching from coherent perfect absorption to full reflection. We hope that this work will open up promising possibilities for wave manipulation via evanescent waves engineering with applications in optical switches, one-side sensing, and radar cross section control.