We have performed a systematic study quantifying the variation of solitary wave behavior from that of an ordered cloud resembling a "crystalline" configuration to that of a disordered state that can be characterized as a soliton "gas". As our illustrative examples, we use both one-component, as well as two-component, one dimensional atomic gases very close to zero temperature, where in the presence of repulsive inter-atomic interactions and of a parabolic trap, a cloud, respectively of dark (dark-bright) solitons can form in the one-(two-) component system. We corroborate our findings through three distinct types of approaches, namely a Gross-Pitaevskii type of partial differential equation, particle-based ordinary differential equations describing the soliton dynamical system and Monte-Carlo simulations for the particle system. We define an "empirical" order parameter to characterize the order of the soliton lattices and study how this changes as a function of the strength of the "thermally" (i.e., kinetically) induced perturbations. As may be anticipated by the one-dimensional nature of our system, the transition from order to disorder is gradual without, apparently, a genuine phase transition ensuing in the intermediate regime.