2023
DOI: 10.1002/lpor.202200607
|View full text |Cite
|
Sign up to set email alerts
|

Coherent Combining for High‐Power Kerr Combs

Abstract: Kerr frequency combs enable the miniaturization of comb sources for applications such as data communications and spectroscopy. However, due to the high field confinement and effective nonlinearity, Kerr combs typically operate with low output comb powers. While nonsolitonic Kerr combs operating in the normal group velocity dispersion (GVD) regime can access high pump‐to‐comb conversion efficiencies and relatively flat spectral profiles, many frequency comb applications require even higher comb‐line powers that… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
1
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 8 publications
(1 citation statement)
references
References 49 publications
0
1
0
Order By: Relevance
“…Apart from being of significant interest in fundamental science, synchronization phenomena also find a wide range of practical applications. For instance, in the field of optics, the synchronization of multiple microresonators can break the power limitation of a single microresonator [3][4][5]. Breathing solitons, manifesting themselves as localized temporal or spatial structures that exhibit periodic oscillatory behavior, are fundamental modes of many nonlinear physical systems and relate to a wide range of important nonlinear dynamics.…”
mentioning
confidence: 99%
“…Apart from being of significant interest in fundamental science, synchronization phenomena also find a wide range of practical applications. For instance, in the field of optics, the synchronization of multiple microresonators can break the power limitation of a single microresonator [3][4][5]. Breathing solitons, manifesting themselves as localized temporal or spatial structures that exhibit periodic oscillatory behavior, are fundamental modes of many nonlinear physical systems and relate to a wide range of important nonlinear dynamics.…”
mentioning
confidence: 99%