Finite Geometries and Combinatorics 1993
DOI: 10.1017/cbo9780511526336.031
|View full text |Cite
|
Sign up to set email alerts
|

Coherent configurations derived from quasiregular points in generalized quadrangles

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

1
10
0

Year Published

1993
1993
2022
2022

Publication Types

Select...
2
2
1

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(11 citation statements)
references
References 0 publications
1
10
0
Order By: Relevance
“…Payne [58] found that the second subconstituent of the collinearity graph of a generalized quadrangle with respect to a quasiregular point is a 3-class association scheme (or a strongly regular graph). Together with Hobart [45] he found conditions to embed the association scheme back in a generalized quadrangle.…”
Section: The Second Subconstituent Of a Strongly Regular Graphmentioning
confidence: 99%
“…Payne [58] found that the second subconstituent of the collinearity graph of a generalized quadrangle with respect to a quasiregular point is a 3-class association scheme (or a strongly regular graph). Together with Hobart [45] he found conditions to embed the association scheme back in a generalized quadrangle.…”
Section: The Second Subconstituent Of a Strongly Regular Graphmentioning
confidence: 99%
“…With fixed x and a > 1 (necessarily a is odd), the numbers of points y with k = 0 and with k = q + 1 are positive and easily computed. Payne observed in [4] that the points at distance 2 from such a quasiregular point p form an association scheme A(S,p) with three classes with one of the relations being collinearity.…”
Section: Introductionmentioning
confidence: 99%
“…In this note, we consider the analogous question for the quadrangle association schemes of [4]. The techniques used are mostly eigenvalue techniques, and [2] is a general reference for these.…”
Section: Introductionmentioning
confidence: 99%
See 2 more Smart Citations