Neural correlations during a cognitive task are central to study brain information processing and computation. However, they have been poorly analyzed due to the difficulty of recording simultaneous single neurons during task performance. In the present work, we quantified neural directional correlations using spike trains that were simultaneously recorded in sensory, premotor, and motor cortical areas of two monkeys during a somatosensory discrimination task. Upon modeling spike trains as binary time series, we used a nonparametric Bayesian method to estimate pairwise directional correlations between many pairs of neurons throughout different stages of the task, namely, perception, working memory, decision making, and motor report. We find that solving the task involves feedforward and feedback correlation paths linking sensory and motor areas during certain task intervals. Specifically, information is communicated by task-driven neural correlations that are significantly delayed across secondary somatosensory cortex, premotor, and motor areas when decision making takes place. Crucially, when sensory comparison is no longer requested for task performance, a major proportion of directional correlations consistently vanish across all cortical areas.vibrotactile discrimination | large-scale cortical networks | spike-train analysis | information theory | decision making T he problem of neural communication in the brain has been little explored traditionally due to the need for simultaneous recordings (1). The arrival of new techniques to record both neural population activity and single-neuron action potentials offers new prospects to study this problem (2, 3). Recently, population recordings have motivated a large number of works on multiunit interactions, including the study of interactions between local field potentials (LFPs) (4-6), LFPs and multiunit activity (5), and LFPs and neuronal spikes (7), but less attention has been paid to interactions between single-unit recordings (8). However, the analysis of simultaneous spike trains becomes critical because it is generally assumed that neurons are key units in distributing information across brain areas (9).An ideal paradigm to study neural communication is the somatosensory discrimination task designed by Romo and coworkers (10). In this task, a trained monkey discriminates the difference in frequency between two mechanical vibrations delivered sequentially to one fingertip (Fig. 1A). Essentially, the monkey must hold the first stimulus frequency (f 1) in working memory, must compare the second stimulus frequency (f 2) with the memory trace of f1 to form a decision of whether f 2 > f 1 or f 2 < f 1, and must postpone the decision until a sensory cue triggers the motor report (11). At the end of every trial, the monkey is rewarded with a drop of liquid for correct discriminations. Previous work on this task has analyzed how single-neuron responses across sensory and motor areas linearly correlate with stimuli and the decision report during the key stages of the ...