Ultrafast optical spectroscopy is an effective experimental technique for accessing electronic and atomic motions in materials at their fundamental timescales and studying their responses to external perturbations. Despite the important insights that ultrafast techniques can provide on the microscopic physics of solids, undergraduate students' exposure to this area of research is still limited. In this article, we describe an ultrafast optical pump-probe spectroscopy experiment for the advanced undergraduate instructional laboratory, in which students can measure coherently excited vibrations of the crystal lattice and connect their observations to the microscopic properties of the investigated materials. We designed a simple table-top apparatus based on a commercial Er-fiber oscillator emitting 50-fs pulses at 1560 nm and at 100 MHz repetition rate. We split the output into two beams, using one of them as an intense “pump” to coherently excite phonons in selected crystals, and the other as a weaker, delayed “probe” to measure the transient reflectivity changes induced by the pump. We characterize the ultrafast laser pulses via intensity autocorrelation measurements and detect coherent phonon oscillations in the reflectivity of Bi, Sb, and 1T-TaS2. We then discuss the oscillation amplitude, frequency, and damping in terms of microscopic properties of these systems.