“…Let {e n : n ∈ N} be an orthonormal basis of H, P n = span{e i : i = 1, ..., n}, ξ = ∞ n=1 1 n e n and P ξ be the orthogonal projection from H onto the one-dimensional subspace of H generated by ξ. It follows from [20,Theorem 2.11] and [7,Lemma 3.2] that L = {0, I, P n , P ξ , P ξ ∨ P n : n = 1, 2, · · · } is a reflexive P-subspace lattice.…”