Expert consensus recommends linear-combination modeling (LCM) of 1 H MR spectra with sequence-specific simulated metabolite basis function and experimentally derived macromolecular (MM) basis functions. Measured MM basis functions are usually derived from metabolite-nulled spectra averaged across a small cohort. The use of subject-specific instead of cohort-averaged measured MM basis functions has not been studied widely. Furthermore, measured MM basis functions are not widely available to non-expert users, who commonly rely on parameterized MM signals internally simulated by LCM software. To investigate the impact of the choice of MM modeling, this study, therefore, compares metabolite level estimates between different MM modeling strategies (cohort-mean measured; subject-specific measured; parameterized) in a lifespan cohort and characterizes its impact on metabolite-age associations. 100 conventional (TE = 30 ms) and metabolite-nulled (TI = 650 ms) PRESS datasets, acquired from the medial parietal lobe in a lifespan cohort (20-70 years of age), were analyzed in Osprey. Short-TE spectra were modeled in Osprey using six different strategies to consider the MM baseline. Fully tissue-and relaxation-corrected metabolite levels were compared between MM strategies.Model performance was evaluated by model residuals, the Akaike information criterion (AIC), and the impact on metabolite-age associations. The choice of MM strategy had a significant impact on the mean metabolite level estimates and no major impact on variance. Correlation analysis revealed moderate-to-strong agreement between different MM strategies (r > 0.6). The lowest relative model residuals and AIC values