This paper describes the first application of a novel reservoir-stimulation methodology that combines oriented extended perforation tunnels of lengths up to 300 feet with specially designed hydraulic fracturing operations in the Niobrara Formation in the Florence Field in Colorado.
The technology was extensively tested in two vertical wells completed with two and five pairs of the extended perforation tunnels respectively. Extended perforation tunnels were jetted using radial drilling technique with the tools deployed using micro coil tubing. The jetting operation on each well was followed by a fracture stimulation treatment. The use of radial drilling technology to create extended perforation tunnels for the vertical wells offered a cost-effective way to significantly increase the reservoir contact area of the wellbore, making it similar to that of horizontal wells in the area. The engineered fracture treatments were performed at low treating pressures, and low proppant and fluid volumes.
The stabilized production rates of both project vertical wells included in this technology test exceeded expectations and are comparable to the stabilized production rate of the offset horizontal well that was completed in the same zone with significantly higher volumes of proppant and fluid. The initial evaluation of the completion efficiency of this novel reservoir stimulation technology showed that its deployment delivered an improved stabilized production rate to cost ratio for the second vertical well, compared to the reference horizontal well.
Based on the test results from the two wells, we conclude that the proposed reservoir stimulation methodology leads to substantial improvements in well production performance compared to traditional reservoir stimulation methods. Both the applied cost-effective approach for increasing the reservoir contact and the significantly lower resource intensity required for the hydraulic fracturing treatment further improve the economic benefits of this methodology.
This novel reservoir stimulation methodology opens the way for reconsidering well completion practices in the Niobrara Formation and holds significant potential for improving the hydrocarbon production economics in the Florence Field.