The wildlife and livestock interface is vital for wildlife conservation and habitat management. Infectious diseases maintained by domestic species may impact threatened species such as Asian bovids, as they share natural resources and habitats. To predict the population impact of infectious diseases with different traits, we used stochastic mathematical models to simulate the population dynamics 100 times over 100 years for a model Gaur (Bos gaurus) population with and without disease. We simulated repeated introductions from a reservoir, such as domestic cattle. We selected six bovine infectious diseases; anthrax, bovine tuberculosis, hemorrhagic septicaemia, lumpy skin disease, foot and mouth disease and brucellosis, all of which have caused outbreaks in wildlife populations. From a starting population of 300, the disease-free population increased by an average of 228%. Brucellosis with frequency-dependent transmission showed the highest average population declines (-97%), with population extinction occurring 16% of the time. Foot and mouth disease with frequency-dependent transmission showed the lowest impact, with an average population increase of 225%. Overall, acute infections with very high or low fatality had the lowest impact, whereas chronic infections produced the greatest population decline. These models can help in disease management and surveillance strategies to support wildlife conservation.