Salicortin, a natural product abundant in most members of the Salicaceae family, is a mechanism-based inactivator of Agrobacterium faecalis beta-glucosidase. Inactivation is delayed in the presence of competitive inhibitors, thereby demonstrating the requirement for an enzyme-bound salicortin before inactivation. Product studies suggest that inactivation proceeds via a quinone methide intermediate formed by the fragmentation of the aglycone of salicortin while it is bound to the enzyme. Tryptic digest and HPLC/MS studies confirm the role of quinone methide attack and also show that the enzyme undergoes multiple modifications. In addition, when the inactivation was run in the presence of a mutant inactive form of the enzyme, HPLC/MS analyses clearly showed no modification of the mutant enzyme, demonstrating that the quinone methide does not exist in free solution and suggesting that inactivation is active-site directed.