2023
DOI: 10.1145/3572405
|View full text |Cite
|
Sign up to set email alerts
|

ColBERT-PRF: Semantic Pseudo-Relevance Feedback for Dense Passage and Document Retrieval

Abstract: Pseudo-relevance feedback mechanisms, from Rocchio to the relevance models, have shown the usefulness of expanding and reweighting the users’ initial queries using information occurring in an initial set of retrieved documents, known as the pseudo-relevant set. Recently, dense retrieval – through the use of neural contextual language models such as BERT for analysing the documents’ and queries’ contents and computing their relevance scores – has shown a promising performance on several information retrieval ta… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
8
0
2

Year Published

2023
2023
2024
2024

Publication Types

Select...
3
3
2

Relationship

0
8

Authors

Journals

citations
Cited by 15 publications
(10 citation statements)
references
References 42 publications
0
8
0
2
Order By: Relevance
“…f. Evaluasi Pada dasarnya, ada dua kriteria berbeda untuk menilai kualitas IRS. Menurut [19], yang pertama adalah Precission. Kemampuan IRS untuk mengembalikan dokumen (informasi) terkait, serta keakuratan dan ketepatan dari dokumen yang diambil, seperti yang ditunjukkan oleh persamaan (2).…”
Section: Stemmingunclassified
See 1 more Smart Citation
“…f. Evaluasi Pada dasarnya, ada dua kriteria berbeda untuk menilai kualitas IRS. Menurut [19], yang pertama adalah Precission. Kemampuan IRS untuk mengembalikan dokumen (informasi) terkait, serta keakuratan dan ketepatan dari dokumen yang diambil, seperti yang ditunjukkan oleh persamaan (2).…”
Section: Stemmingunclassified
“…Recall merupakan proporsi dokumen yang telah ditemukan dan terkait dengan kueri. membantu menghitung metrik IR lainnya yaitu F dengan persamaan berikut[19]…”
unclassified
“…It is worth exploring more complex retrieval models that bring different re-ranking candidates. However, given the GPU memory limitation, we could not replicate the retrieval model, ColBERT-PRF [28], used by one of the TREC participants [14] that produces the best TREC evaluation scores. We leave this part as one direction of our feature work.…”
Section: 43mentioning
confidence: 99%
“…Moreover, Gao and Callan (2022) [25] proposed the MORES+ model, which is a re-ranking method, and tested it on two classical IR collections: Robust04 and ClueWeb09. Wang et al (2023) [28] proposed a ranking method named ColBERT-PRF. They evaluated it on the MSMARCO and TREC Robust collections for document ranking tasks.…”
Section: Non-entity-based Document Retrievalmentioning
confidence: 99%