Platinum nanoparticles (PtNPs) have been investigated for their antioxidant abilities in a range of biological and other applications. The ability to reduce off-target CAP cytotoxicity would be useful in Plasma Medicine, however, little has been published to date about the ability of PtNPs to reduce or inhibit the effects of CAP. Here we investigate whether PtNPs can protect against CAP-induced cytotoxicity in cancerous and non-cancerous cell lines. PtNPs were shown to dramatically reduce intracellular reactive species (RONS) production in human U-251 MG cells. However, RONS generation was unaffected by PtNPs in medium without cells. PtNPs protect against CAP induced mitochondrial membrane depolarization, but not cell membrane permeabilization which is a CAP-induced RONS-independent event. PtNPs act as potent intracellular scavengers of reactive species and can protect both cancerous U-251 MG cells and non-cancerous HEK293 cells against CAP induced cytotoxicity. PtNPs may be useful as a catalytic antioxidant for healthy tissue and for protecting against CAP-induced tissue damage.