We consider a trapped atomic ensemble of interacting bosons in the presence of a single trapped ion in a quasi-one-dimensional geometry. Our study is carried out by means of the newly developed multilayer-multiconfiguration time-dependent Hartree method for bosons, a numerical exact approach to simulate quantum many-body dynamics. In particular, we are interested in the scenario by which the ion is so strongly trapped that its motion can be effectively neglected. This enables us to focus on the atomic ensemble only. With the development of a model potential for the atom-ion interaction, we are able to numerically obtain the exact many-body ground state of the atomic ensemble in the presence of an ion. We analyze the influence of the atom number and the atom-atom interaction on the ground state properties. Interestingly, for weakly interacting atoms, we find that the ion impedes the transition from the ideal gas behavior to the Thomas-Fermi limit. Furthermore, we show that this effect can be exploited to infer the presence of the ion both in the momentum distribution of the atomic cloud and by observing the interference fringes occurring during an expansion of the quantum gas. In the strong interacting regime, the ion modifies the fragmentation process in dependence of the atom number parity which allows a clear identification of the latter in expansion experiments. Hence, we propose in both regimes experimentally viable strategies to assess the impact of the ion on the many-body state of the atomic gas. This study serves as the first building block for systematically investigating the many-body physics of such hybrid system.