Plant RNA editing modifies cytidines (C) to uridines (U) at specific sites in the transcripts of both mitochondria and plastids. Specific targeting of particular Cs is achieved by pentatricopeptide proteins that recognize cis elements upstream of the C that is edited. Members of the RNA-editing factor interacting protein (RIP) family in Arabidopsis have recently been shown to be essential components of the plant editosome. We have identified a gene that contains a pair of truncated RIP domains (RIP-RIP). Unlike any previously described RIP family member, the encoded protein carries an RNA recognition motif (RRM) at its C terminus and has therefore been named Organelle RRM protein 1 (ORRM1). ORRM1 is an essential plastid editing factor; in Arabidopsis and maize mutants, RNA editing is impaired at particular sites, with an almost complete loss of editing for 12 sites in Arabidopsis and 9 sites in maize. Transfection of Arabidopsis orrm1 mutant protoplasts with constructs encoding a region encompassing the RIP-RIP domain or a region spanning the RRM domain of ORRM1 demonstrated that the RRM domain is sufficient for the editing function of ORRM1 in vitro. According to a yeast two-hybrid assay, ORRM1 interacts selectively with pentatricopeptide transfactors via its RIP-RIP domain. Phylogenetic analysis reveals that the RRM in ORRM1 clusters with a clade of RRM proteins that are targeted to organelles. Taken together, these results suggest that other members of the ORRM family may likewise function in RNA editing.