Experimental data demonstrating differences in the structures of channels formed during nanosecond discharges through fine wires made of different materials are presented. In addition to the traditional two classes of metals and alloys (the copper and tungsten groups), a new class is proposed to which materials of the nickel type belong. Their properties combine the characteristic properties of the two traditional groups, due to which they occupy an intermediate position between the latter. This manifests itself in the unstable character of explosion, the type of which can change drastically when changing the ambient medium or other conditions. Most of the reported results were obtained at a small setup with maximum values of the current and voltage of 10 kA and 20 kV, respectively, the current rise time being about 300 ns. An attempt is made to construct a scenario of the development of a nanosecond explosion that would make it possible to qualitatively describe the formation of the discharge channel structure. The analysis is based on the recent experimental results indicating that the cores formed in the course of the discharge have a tubular structure.