In the emerging deployment of microturbines (25–75Kw), a recuperator is mandatory to achieve thermal efficiencies of 30 percent and higher, this being important if they are to successfully penentrate the market currently dominated by Diesel generator sets. This will be the first application of gas turbines for electrical power generation, where recuperators will be used in significant quantities. The experience gained with these machines will give users’ confidence that recuperated engines will meet performance and reliability goals. The latter point is particularly important, since recuperated gas turbines have not been widely deployed for power generation, and early variants were a disappointment. Recuperator technology transfer to larger engines will see the introduction of advanced heat exchanged industrial gas turbines for power generation in the 3–15 Mw range.
After many decades of development, existing recuperators of both primary surface and plate-fin types, have demonstrated acceptable thermal performance and integrity in the cyclic gas turbine environment, but their capital costs are high.
A near-term challenge to recuperator design and manufacturing engineers is to establish lower cost metallic heat exchangers that can be manufactured using high volume production methods. A longer term goal will be the development and utilization of a ceramic recuperator, since this is the key component to realize the full performance potential of very small and medium size gas turbines.