2022
DOI: 10.1109/access.2022.3199070
|View full text |Cite
|
Sign up to set email alerts
|

Collaborative Decision-Making Method for Multi-UAV Based on Multiagent Reinforcement Learning

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
5
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
6
1
1

Relationship

0
8

Authors

Journals

citations
Cited by 27 publications
(18 citation statements)
references
References 28 publications
0
5
0
1
Order By: Relevance
“…Merkezi eleştiriyi tasarlamak için bir dikkat mekanizması kullanılmaktadır. Algoritma eğitilir ve test edilir Çoklu İHA işbirlikçi karar verme problemini çözmek için, çok erkinli bir pekiştirmeli öğrenme tasarlandı [6].…”
Section: çOk Ekinli Sistemlerunclassified
“…Merkezi eleştiriyi tasarlamak için bir dikkat mekanizması kullanılmaktadır. Algoritma eğitilir ve test edilir Çoklu İHA işbirlikçi karar verme problemini çözmek için, çok erkinli bir pekiştirmeli öğrenme tasarlandı [6].…”
Section: çOk Ekinli Sistemlerunclassified
“…Chai et al [8] utilized two cascade DRL controllers to output the desired attitude and control command respectively. Moreover, techniques such as transformer [9] and inverse DRL [10] were also applied.…”
Section: Introductionmentioning
confidence: 99%
“…However, most works concerning DRL-based dogfight [9]- [14] only focused on simplified UCAV dynamics with three degrees of freedom (DOF), which is far from the real situation. Moreover, most works only claimed their algorithms outperformed conventional methods.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…On the other hand, the CU is typically situated at the traditional base stations (BS), housing the centralized processing and control functions. This segregation of responsibilities allows for a more distributed and flexible network architecture, enabling UAVs to efficiently handle communication tasks at the edge of the network, while the centralized units manage core functionalities and resource allocation [5]. This paper addresses the challenge of optimizing end-to-end performance in UAV-assisted cellular networks, focusing on the dynamic and adaptive 3D placement of UAVs.…”
Section: Introductionmentioning
confidence: 99%