Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
A large language model refers to a deep learning model characterized by extensive parameters and pretraining on a large-scale corpus, utilized for processing natural language text and generating high-quality text output. The increasing deployment of large language models has brought significant attention to their associated privacy and security issues. Recent experiments have demonstrated that training data can be extracted from these models due to their memory effect. Initially, research on large language model training data extraction focused primarily on non-targeted methods. However, following the introduction of targeted training data extraction by Carlini et al., prefix-based extraction methods to generate suffixes have garnered considerable interest, although current extraction precision remains low. This paper focuses on the targeted extraction of training data, employing various methods to enhance the precision and speed of the extraction process. Building on the work of Yu et al., we conduct a comprehensive analysis of the impact of different suffix generation methods on the precision of suffix generation. Additionally, we examine the quality and diversity of text generated by various suffix generation strategies. The study also applies membership inference attacks based on neighborhood comparison to the extraction of training data in large language models, conducting thorough evaluations and comparisons. The effectiveness of membership inference attacks in extracting training data from large language models is assessed, and the performance of different membership inference attacks is compared. Hyperparameter tuning is performed on multiple parameters to enhance the extraction of training data. Experimental results indicate that the proposed method significantly improves extraction precision compared to previous approaches.
A large language model refers to a deep learning model characterized by extensive parameters and pretraining on a large-scale corpus, utilized for processing natural language text and generating high-quality text output. The increasing deployment of large language models has brought significant attention to their associated privacy and security issues. Recent experiments have demonstrated that training data can be extracted from these models due to their memory effect. Initially, research on large language model training data extraction focused primarily on non-targeted methods. However, following the introduction of targeted training data extraction by Carlini et al., prefix-based extraction methods to generate suffixes have garnered considerable interest, although current extraction precision remains low. This paper focuses on the targeted extraction of training data, employing various methods to enhance the precision and speed of the extraction process. Building on the work of Yu et al., we conduct a comprehensive analysis of the impact of different suffix generation methods on the precision of suffix generation. Additionally, we examine the quality and diversity of text generated by various suffix generation strategies. The study also applies membership inference attacks based on neighborhood comparison to the extraction of training data in large language models, conducting thorough evaluations and comparisons. The effectiveness of membership inference attacks in extracting training data from large language models is assessed, and the performance of different membership inference attacks is compared. Hyperparameter tuning is performed on multiple parameters to enhance the extraction of training data. Experimental results indicate that the proposed method significantly improves extraction precision compared to previous approaches.
With the development of IoT technology, central cloud servers and edge-computing servers together form a cloud–edge communication network to meet the increasing demand for computing tasks. The data transmitted in this network is of high value, so the ability to quickly and accurately predict the traffic load of each link becomes critical to ensuring the security and stable operation of the network. In order to effectively counter the potential threat of flood attacks on network stability, we combine the Bi-directional Gated Recurrent Unit (BiGRU) model with the Dung Beetle Optimizer (DBO) algorithm to design a DBO-BiGRU short-term traffic load prediction model. Experimental validation on a public dataset shows that the proposed model has better prediction accuracy and fit than the mainstream models of RNN, LSTM, and TCN.
Large Language Models (LLMs) have demonstrated impressive capabilities in autogenerating code based on natural language instructions provided by humans. We observed that in the microservice models of edge computing, the problem of deployment latency optimization can be transformed into an NP-hard mathematical optimization problem. However, in the real world, deployment strategies at the edge often require immediate updates, while human-engineered code tends to be lagging. To bridge this gap, we innovatively integrated LLMs into the decision-making process for microservice deployment. Initially, we constructed a private Retrieval Augmented Generation (RAG) database containing prior knowledge. Subsequently, we employed meticulously designed step-by-step inductive instructions and used the chain of thought (CoT) technique to enable the LLM to learn, reason, reflect, and regenerate. We decomposed the microservice deployment latency optimization problem into a collection of granular sub-problems (described in natural language), progressively providing instructions to the fine-tuned LLM to generate corresponding code blocks. The generated code blocks underwent integration and consistency assessment. Additionally, we prompted the LLM to generate code without the use of the RAG database for comparative analysis. We executed the aforementioned code and comparison algorithm under identical operational environments and simulation parameters, conducting rigorous result analysis. Our fine-tuned model significantly reduced latencies by 22.8% in handling surges in request flows, 37.8% in managing complex microservice types, and 39.5% in processing increased network nodes compared to traditional algorithms. Moreover, our approach demonstrated marked improvements in latency performance over LLMs not utilizing RAG technology and reinforcement learning algorithms reported in other literature. The use of LLMs also highlights the concept of symmetry, as the symmetrical structure of input-output relationships in microservice deployment models aligns with the LLM’s inherent ability to process and generate balanced and optimized code. Symmetry in this context allows for more efficient resource allocation and reduces redundant operations, further enhancing the model’s effectiveness. We believe that LLMs hold substantial potential in optimizing microservice deployment models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.