Robot autonomous navigation has become a vital area in the industrial development of minimizing labor-intensive tasks. Most of the recently developed robot navigation systems are based on perceiving geometrical features of the environment, utilizing sensory devices such as laser scanners, range-finders, and microwave radars to construct an environment map. However, in robot navigation, scene understanding has become essential for comprehending the area of interest and achieving improved navigation results. The semantic model of the indoor environment provides the robot with a representation that is closer to human perception, thereby enhancing the navigation task and human–robot interaction. However, semantic navigation systems require the utilization of multiple components, including geometry-based and vision-based systems. This paper presents a comprehensive review and critical analysis of recently developed robot semantic navigation systems in the context of their applications for semantic robot navigation in indoor environments. Additionally, we propose a set of evaluation metrics that can be considered to assess the efficiency of any robot semantic navigation system.