Gene microarray classification problems are considered a challenge task since the datasets contain few number of samples with high number of genes (features). The genes subset selection in microarray data play an important role for minimizing the computational load and solving classification problems. In this paper, the Correlation-based Feature Selection (CFS) algorithm is utilized in the feature selection process to reduce the dimensionality of data and finding a set of discriminatory genes. Then, the Decision Table, JRip, and OneR are employed for classification process. The proposed approach of gene selection and classification is tested on 11 microarray datasets and the performances of the filtered datasets are compared with the original datasets. The experimental results showed that CFS can effectively screen irrelevant, redundant, and noisy features. In addition, the results for all datasets proved that the proposed approach with a small number of genes can achieve high prediction accuracy and fast computational speed. Considering the average accuracy for all the analysis of microarray data, the JRip achieved the best result as compared to Decision Table, and OneR classifier. The proposed approach has a remarkable impact on the classification accuracy especially when the data is complicated with multiple classes and high number of genes.