We present a spherically symmetric solution of the general relativistic field equations in isotropic coordinates for perfect charged fluid, compatible with a super dense star modeling. The solution is well behaved for all the values of Schwarzschild parameter u lying in the range 0 < u < 0.1727 for the maximum value of charge parameter K = 0.08163. The maximum mass of the fluid distribution is calculated by using stellar surface density as ρ b = 4.6888 × 10 14 g cm −3 . Corresponding to K = 0.08 and u max = 0.1732, the resulting well behaved solution has a maximum mass M = 0.9324M and radius R = 8.00 and by assuming ρ b = 2 × 10 14 g cm −3 the solution results a stellar configuration with maximum mass M = 1.43M and radius R b = 12.25 km. The maximum mass is found increasing with increasing K up to 0.08. The well behaved class of relativistic stellar models obtained in this work might has astrophysical significance in the study of internal structure of compact star such as neutron star or self-bound strange quark star like Her X-1.