2020
DOI: 10.3233/ida-200009
|View full text |Cite
|
Sign up to set email alerts
|

Collective annotation patterns in learning from crowds

Abstract: The lack of annotated data is one of the major barriers facing machine learning applications today. Learning from crowds, i.e. collecting ground-truth data from multiple inexpensive annotators, has become a common method to cope with this issue. It has been recently shown that modeling the varying quality of the annotations obtained in this way, is fundamental to obtain satisfactory performance in tasks where inexpert annotators may represent the majority but not the most trusted group. Unfortunately, existing… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 13 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?