The cage effect is generally invoked when discussing the delay in the decay of time correlation functions of dense fluids. In an attempt to examine the role of caging more closely, we consider the spread of the displacement distributions of Brownian particles. These distributions are necessarily biased by the presence of neighbouring particles. Accommodation of this bias by those neighbours conserves the displacement distribution locally and presents a collective mechanism for exploring configuration space that is more efficient than the intrinsic Brownian motion. Caging of some particles incurs, through the impost of global conservation of the displacement distribution, a delayed, non-local collective process. This non-locality compromises the efficiency with which configuration space is explored. Both collective mechanisms incur delay or stretching of time correlation functions, in particular the particle number and flux densities. This paper identifies and distinguishes these mechanisms in existing data from experiments and computer simulations on systems of particles with hard sphere interactions.