The mechanism of Coulomb explosion induced by the interactions of ultra-intense laser pulses with near-critical density plasmas was investigated using 2.5D particle-in-cell simulations. While the Coulomb explosion occurred continuously during pulse propagation inside the plasma, a large quantity of charge was generated and acquired in the backward direction. The accelerated ion beam had a peak energy of several tens of MeV, and the maximum energy was over hundreds MeV. A theoretical model has been proposed to estimate the total acquired charge quantity, the maximum ion energy, and their dependence on the initial plasma density.